Absorbing acoustics with soundless spirals: Researchers have designed a super-thin acoustic metasurface for perfect sound absorption — ScienceDaily

Absorbing acoustics with soundless spirals: Researchers have designed a super-thin acoustic metasurface for perfect sound absorption — ScienceDaily

 

Acoustic absorption systems work by absorbing sound energy at a resonant frequency and dissipating it into heat. Traditional acoustic absorbers consist of specially perforated plates placed in front of hard objects to form air cavities; however, in order to operate at low frequencies, these systems must also be relatively thick in length, which makes them physically impractical for most applications.

To remedy this, Assouar’s group, whose previous work consisted of developing coiled channel systems, designed an acoustic absorber in which sound waves enter an internal coiled air channel through a perforated center hole. This forces the acoustic waves to travel through the channel, effectively increasing the total propagation length of the waves and leading to an effective low sound velocity and high acoustic refractive index. This allows them to make the absorber itself relatively thin, while still maintaining the absorptive properties of a much thicker chamber.

Read Article
Contact Us